66 research outputs found

    Improvement and development of one- and two-dimensional discrete gust models using a large-eddy simulation model

    Get PDF
    High resolution large-eddy simulations (LES) were carried out to simulate the turbulent flow of the atmospheric boundary layer during an idealized strong-wind event in order to verify discrete gust models like the one-minus-cosine law which are used in the design process of aircraft and wind turbines. Furthermore existing gust models will be improved and new analytical approaches will be developed to approximate gusts more accurately. Mean gust shapes of the three wind speed components are calculated by means of virtual measurements of the turbulent wind speed at different heights above ground to analyze both the one- and two-dimensional characteristics of discrete gusts. One-dimensional results of the mean gust shapes show significant differences compared to the classical one-cosine gust model like a steeper increase and decrease as well as a rather constant middle part. Results obtained from previous mast measurements, however, show the same main gust characteristics as the present LES gusts. Two-dimensional mean gust shapes have not been calculated from field measurements yet. The results obtained from the LES data show elliptically shaped contours with different aspect ratios for different gust diameters and heights above ground. For both, one- and two-dimensional mean gust shapes, mathematical approximations are presented as alternative approach to the classical gust models in order to be able to reproduce the mean gust shapes for future applications. © 2016 The Authors.DFG/FOR/1066DFG/RA617/19-

    Large-Eddy Simulations of Surface Heterogeneity Effects on the Convective Boundary Layer During the LITFASS-2003 Experiment

    Get PDF
    We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.DFG/RA 617/21-

    How Do Dust Devil-Like Vortices Depend on Model Resolution? A Grid Convergence Study Using Large-Eddy Simulation

    Get PDF
    Dust devils are organized convective vortices with pressure drops of hundreds of pascals that spirally lift surface material into the air. This material modifies the radiation budget by contributing to the atmospheric aerosol concentration. Quantification of this contribution requires good knowledge of the dust devil statistics and dynamics. The latter can also help to understand vortex genesis, evolution and decay, in general. Dust devil-like vortices are numerically investigated mainly by large-eddy simulation (LES). A critical parameter in these simulations is the grid spacing, which has a great influence on the dust devil statistics. So far, it is unknown which grid size is sufficient to capture dust devils accurately. We investigate the convergence of simulated convective vertical vortices that resemble dust devils by using the LES model PALM. We use the nesting capabilities of PALM to explore grid spacings from 10 to 0.625 m. Grid spacings of 1 m or less have never been used for the analysis of dust devil-like vortices that develop in a horizontal domain of more than 10 km2. Our results demonstrate that a minimum resolution of 1.25 m is necessary to achieve a convergence for sample-averaged quantities like the core pressure drop. This grid spacing or smaller should be used for future quantifications of dust devil sediment fluxes. However, sample maxima of the investigated dust devil population and peak velocity values of the general flow show no convergence. If a qualitative description of the dust devil flow pattern is sufficient, we recommend a grid spacing of 2.5 m or smaller

    Heterogeneity-Induced Heat-Flux Patterns in the Convective Boundary Layer: Can they be Detected from Observations and is There a Blending Height? - A Large-Eddy Simulation Study for the LITFASS-2003 Experiment

    Get PDF
    An understanding of how the convective boundary layer (CBL) is mixed under heterogeneous surface forcing is crucial for the interpretation of area-averaged turbulence measurements. To determine the height and degree to which a complex heterogeneous surface affects the CBL, large-eddy simulations (LES) for two days of the LITFASS-2003 experiment representing two different wind regimes were undertaken. Spatially-lagged correlation analysis revealed the turbulent heat fluxes to be dependent on the prescribed surface flux pattern throughout the entire CBL including the entrainment layer. These findings prompted the question of whether signals induced by surface heterogeneity can be measured by airborne systems. To examine this question, an ensemble of virtual flights was conducted using LES, according to Helipod flight measurements made during LITFASS-2003. The resulting ensemble-averaged heat fluxes indicated a clear dependence on the underlying surface up to the top of the CBL. However, a large scatter between the flux measurements in different ensemble runs was observed, which was the result of insufficient sampling of the largest turbulent eddies. The random and systematic errors based on the integral length scale did not indicate such a large scatter. For the given flight leg lengths, at least 10-15 statistically independent flight measurements were necessary to give a significant estimate of heterogeneity-induced signals in the CBL. The need for ensemble averaging suggests that the observed blending of heterogeneity-induced signals in the CBL can be partly attributed to insufficient averaging.DFG/RA 617/21-

    Effects of unstable stratification on ventilation in Hong Kong

    Get PDF
    Ventilation in cities is crucial for thewell being of their inhabitants. Therefore, local governments require air ventilation assessments (AVAs) prior to the construction of new buildings. In a standard AVA, however, only neutral stratification is considered, although diabatic and particularly unstable conditions may be observed more frequently in nature. The results presented here indicate significant changes in ventilation within most of the area of Kowloon City, Hong Kong, included in the study. A new definition for calculating ventilation was introduced, and used to compare the influence of buildings on ventilation under conditions of neutral and unstable stratification. The overall ventilation increased due to enhanced vertical mixing. In the vicinity of exposed buildings, however, ventilation was weaker for unstable stratification than for neutral stratification. The influence on ventilation by building parameters, such as the plan area index, was altered when unstable stratification was considered. Consequently, differences in stratification were shown to have marked effects on ventilation estimates, which should be taken into consideration in future AVAs

    Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation

    Get PDF
    Doppler-lidar scan techniques for wind profiling rely on the assumption of a horizontally homogeneous wind field and stationarity for the duration of the scan. As this condition is mostly violated in reality, detailed knowledge of the resulting measurement error is required. The objective of this study is to quantify and compare the expected error associated with Doppler-lidar wind profiling for different scan strategies and meteorological conditions by performing virtual Doppler-lidar measurements implemented in a large-eddy simulation (LES) model. Various factors influencing the lidar retrieval error are analyzed through comparison of the wind measured by the virtual lidar with the “true” value generated by the LES. These factors include averaging interval length, zenith angle configuration, scan technique and instrument orientation (cardinal direction). For the first time, ensemble simulations are used to determine the statistically expected uncertainty of the lidar error. The analysis reveals a root-mean-square deviation (RMSD) of less than 1 m s−1 for 10 min averages of wind speed measurements in a moderately convective boundary layer, while RMSD exceeds 2 m s−1 in strongly convective conditions. Unlike instrument orientation with respect to the main flow and scanning scheme, the zenith angle configuration proved to have significant effect on the retrieval error. Horizontal wind speed error is reduced when a larger zenith angle configuration is used but is increased for measurements of vertical wind. Furthermore, we find that extending the averaging interval length of lidar measurements reduces the error. In addition, a longer duration of a full scan cycle and hence a smaller number of scans per averaging interval increases the error. Results suggest that the scan strategy has a measurable impact on the lidar retrieval error and that instrument configuration should be chosen depending on the quantity of interest and the flow conditions in which the measurement is performed

    An Improved Surface Boundary Condition for Large-Eddy Simulations Based on Monin–Obukhov Similarity Theory: Evaluation and Consequences for Grid Convergence in Neutral and Stable Conditions

    Get PDF
    Monin–Obukhov similarity theory is used in large-eddy simulation (LES) models as a surface boundary condition to predict the surface shear stress and scalar fluxes based on the gradients between the surface and the first grid level above the surface. We outline deficiencies of this methodology, such as the systematical underestimation of the surface shear stress, and propose a modified boundary condition to correct for this issue. The proposed boundary condition is applied to a set of LES for both neutral and stable boundary layers with successively decreasing grid spacing. The results indicate that the proposed boundary condition reliably corrects the surface shear stress and the sensible heat flux, and improves grid convergence of these quantities. The LES data indicate improved grid convergence for the surface shear stress, more so than for the surface heat flux. This is either due to a limited performance of the Monin–Obukhov similarity functions or due to problems in the LES model in representing stable conditions. Furthermore, we find that the correction achieved using the proposed boundary condition does not lead to improved grid convergence of the wind-speed and temperature profiles. From this we conclude that the sensitivity of the wind-speed and temperature profiles in the LES model to the grid spacing is more likely related to under-resolved near-surface gradients and turbulent mixing at the boundary-layer top, to the SGS model formulation, and/or to numerical issues, and not to deficiencies due to the use of improper surface boundary conditions.publishedVersio

    On the Effect of Surface Heat-Flux Heterogeneities on the Mixed-Layer-Top Entrainment

    Get PDF
    We used a set of large-eddy simulations to investigate the effect of one-dimensional stripe-like surface heat-flux heterogeneities on mixed-layer top entrainment. The profiles of sensible heat flux and the temporal evolution of the boundary-layer depth revealed decreased entrainment for small heat-flux amplitudes and increased entrainment for large heat-flux amplitudes, compared to the homogeneously-heated mixed layer. For large heat-flux amplitudes the largest entrainment was observed for patch sizes in the order of the boundary-layer depth, while for significantly smaller or larger patch sizes entrainment was similar as in the homogeneous case. In order to understand the underlying physics of this impact, a new approach was developed to infer local information on entrainment by means of the local flux divergence. We found an entrainment maximum over the centre of the stronger heated surface patch, where thermal energy is accumulated by the secondary circulation (SC) that was induced by the surface heterogeneity. Furthermore, we observed an entrainment maximum over the less heated patch as well, which we suppose is to be linked to the SC-induced horizontal flow convergence at the top of the convective boundary layer (CBL). For small heat-flux amplitudes a counteracting effect dominates that decreases entrainment, which we suppose is the horizontal advection of cold air in the lower, and warm air in the upper, CBL by the SC, stabilizing the CBL and thus weakening thermal convection. Moreover, we found that a mean wind can reduce the heterogeneity-induced impact on entrainment. If the flow is aligned perpendicular to the border between the differentially-heated patches, the SC and thus its impact on entrainment vanishes due to increased horizontal mixing, even for moderate wind speeds. However, if the flow is directed parallel to the border between the differentially-heated patches, the SC and thus its impact on entrainment persists.DFG/RA 617/21-1DFG/RA 617/20-1Niedersächsische Technische Hochschule (NTH

    Assessment of Surface-Layer Coherent Structure Detection in Dual-Doppler Lidar Data Based on Virtual Measurements

    Get PDF
    Dual-Doppler lidar has become a useful tool to investigate the wind-field structure in two-dimensional planes. However, lidar pulse width and scan duration entail significant and complex averaging in the resulting retrieved wind-field components. The effects of these processes on the wind-field structure remain difficult to investigate with in situ measurements. Based on high resolution large-eddy simulation (LES) data for the surface layer, we performed virtual dual-Doppler lidar measurements and two-dimensional data retrievals. Applying common techniques (integral length scale computation, wavelet analysis, two-dimensional clustering of low-speed streaks) to detect and quantify the length scales of the occurring coherent structures in both the LES and the virtual lidar wind fields, we found that, (i) dual-Doppler lidar measurements overestimate the correlation length due to inherent averaging processes, (ii) the wavelet analysis of lidar data produces reliable results, provided the length scales exceed a lower threshold as a function of the lidar resolution, and (iii) the low-speed streak clusters are too small to be detected directly by the dual-Doppler lidar. Furthermore, we developed and tested a method to correct the integral scale overestimation that, in addition to the dual-Doppler lidar, only requires high-resolution wind-speed variance measurements, e.g. at a tower or energy balance station.DFG/RA 617/19-

    The route to raindrop formation in a shallow cumulus cloud simulated by a Lagrangian cloud model

    Get PDF
    The mechanism of raindrop formation in a shallow cumulus cloud is investigated using a Lagrangian cloud model (LCM). The analysis is focused on how and under which conditions a cloud droplet grows to a raindrop by tracking the history of individual Lagrangian droplets. It is found that the rapid collisional growth, leading to raindrop formation, is triggered when single droplets with a radius of 20 μm appear in the region near the cloud top, characterized by large liquid water content, strong turbulence, large mean droplet size, broad drop size distribution (DSD), and high supersaturations. Raindrop formation easily occurs when turbulence-induced collision enhancement (TICE) is considered, with or without any extra broadening of the DSD by another mechanism (such as entrainment and mixing). In contrast, when TICE is not considered, raindrop formation is severely delayed if no other broadening mechanism is active. The reason for the difference is clarified by the additional analysis of idealized box simulations of the collisional growth process for different DSDs in varied turbulent environments. It is found that TICE does not accelerate the timing of the raindrop formation for individual droplets, but it enhances the collisional growth rate significantly afterward by providing a greater number of large droplets for collision. Higher droplet concentrations increase the time for raindrop formation and decrease precipitation but intensify the effect of TICE. Copyright 2017 American Meteorological Societ
    corecore